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Abstract

Since the revitalization of “the Warburg effect”, there has been great interest in mitochondrial 

oxidative metabolism, not only from the cancer perspective but also from the general biomedical 

science field. As the center of oxidative metabolism, mitochondria and their metabolic activity are 

tightly controlled to meet cellular energy requirements under different physiological conditions. 

One such mechanism is through the inducible transcriptional co-regulators PGC1α and NCOR1, 

which respond to various internal or external stimuli to modulate mitochondrial function. 

However, the activity of such co-regulators depends on their interaction with transcriptional 

factors that directly bind to and control downstream target genes. The nuclear receptors PPARs 

and ERRs have been shown to be key transcriptional factors in regulating mitochondrial oxidative 

metabolism and executing the inducible effects of PGC1α and NCOR1. In this review, we 

summarize recent gain- and loss-of-function studies of PPARs and ERRs in metabolic tissues and 

discuss their unique roles in regulating different aspects of mitochondrial oxidative metabolism.

Introduction

Energy is vital to all living organisms. In humans and other mammals, the vast majority of 

energy is produced by oxidative metabolism in mitochondria [1]. As a cellular organelle, 

mitochondria are under tight control of the nucleus. Although the majority of mitochondrial 

proteins are encoded by nuclear DNA (nDNA) and their expression regulated by the 

nucleus, mitochondria retain their own genome, mitochondrial DNA (mtDNA), encoding 13 

polypeptides of the electron transport chain (ETC) in mammals. However, all proteins 

required for mtDNA replication, transcription, and translation, as well as factors regulating 

such activities, are encoded by the nucleus [2].
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The cellular demand for energy varies in different cells under different physiological 

conditions. Accordingly, the quantity and activity of mitochondria are differentially 

controlled by a transcriptional regulatory network in both the basal and induced states. A 

number of components of this network have been identified, including members of the 

nuclear receptor superfamily, the peroxisome proliferator-activated receptors (PPARs) and 

the estrogen-related receptors (ERRs) [3–5].

The Yin-Yang Co-Regulators

A well-known inducer of mitochondrial oxidative metabolism is the peroxisome 

proliferator-activated receptor γ coactivator 1α (PGC1α) [6], a nuclear cofactor which is 

abundantly expressed in high energy demand tissues such as heart, skeletal muscle, and 

brown adipose tissue (BAT) [7]. Induction by cold-exposure, fasting, and exercise allows 

PGC1α to regulate mitochondrial oxidative metabolism by activating genes involved in the 

tricarboxylic acid cycle (TCA cycle), beta-oxidation, oxidative phosphorylation (OXPHOS), 

as well as mitochondrial biogenesis [6,8](Figure 1).

The effect of PGC1α on mitochondrial regulation is antagonized by transcriptional 

corepressors such as the nuclear receptor corepressor 1 (NCOR1) [9,10]. In contrast to 

PGC1α, the expression of NCOR1 is suppressed in conditions where PGC1α is induced 

such as during fasting, high-fat-diet challenge, and exercise [9,11]. Moreover, the knockout 

of NCOR1 phenotypically mimics PGC1α overexpression in regulating mitochondrial 

oxidative metabolism [9]. Therefore, coactivators and corepressors collectively regulate 

mitochondrial metabolism in a Yin-Yang fashion.

However, both PGC1α and NCOR1 lack DNA binding activity and rather act via their 

interaction with transcription factors that direct the regulatory program. Therefore the 

transcriptional factors that partner with PGC1α and NCOR1 mediate the molecular signaling 

cascades and execute their inducible effects on mitochondrial regulation.

PPARs: Master Executors Controlling Fatty Acid Oxidation

Both PGC1α and NCOR1 are co-factors for the peroxisome proliferator-activated receptors 

(PPARα, γ, and δ) [7,11–13]. It is now clear that all three PPARs play essential roles in lipid 

and fatty acid metabolism by directly binding to and modulating genes involved in fat 

metabolism [13–19]. While PPARγ is known as a master regulator for adipocyte 

differentiation and does not seem to be involved with oxidative metabolism [14,20], both 

PPARα and PPARδ are essential regulators of fatty acid oxidation (FAO) [3,13,15,19,21] 

(Figure 1).

PPARα was first cloned as the molecular target of fibrates, a class of cholesterol-lowering 

compounds that increase hepatic FAO [22]. The importance of PPARα in regulating FAO is 

indicated in its expression pattern which is restricted to tissues with high capacity of FAO 

such as heart, liver, BAT, and oxidative muscle [23]. On the other hand, PPARδ is 

ubiquitously expressed with higher levels in the digestive tract, heart, and BAT [24]. In the 

past 15 years, extensive studies using gain- and loss-of-function models have clearly 

demonstrated PPARα and PPARδ as the major drivers of FAO in a wide variety of tissues.
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Heart

The adult heart relies heavily on FAO as the energy source. PPARα plays an important role 

in regulating cardiac FAO. However, it only activates genes in FA metabolic pathways such 

as fatty acid uptake and beta-oxidation, rather than in the TCA cycle or OXPHOS [15]. 

Notably, PPARα activation suppresses mitochondrial OXPHOS genes that are regulated by 

PGC1α and ERRs in cardiomyocytes [25]. When ectopically expressed in the heart, PPARα 

induces cellular FA uptake and beta-oxidation while reducing glucose import and glycolysis 

[15]. However, the increased FA uptake seems to exceed the burning capacity of 

mitochondrial OXPHOS, resulting in myocardial lipid accumulation and cardiac 

hypertrophy [15]. Knockout of PPARα leads to reduced FA uptake and beta-oxidation [26], 

further confirming its importance in regulating FAO. PPARδ shares certain similarities with 

PPARα in regulating FAO in the heart [16]. When overexpressed, PPARδ also induces FAO 

by up-regulating genes in mitochondrial FA transport and beta-oxidation. But unlike 

PPARα, overexpression of PPARδ does not cause lipid accumulation or cardiac dysfunction, 

likely due to increased glucose utilization [19]. The importance of PPARδ in regulating 

cardiac FAO has been further demonstrated in a loss-of-function study, where heart-specific 

deletion of PPARδ causes down-regulation of key FAO genes and reduces FAO, resulting in 

myocardial lipid accumulation and cardiac hypertrophy [27].

Skeletal Muscle

Skeletal muscle also burns fatty acids for energy production. There are generally two types 

of muscle fibers: type I oxidative fibers that are rich in mitochondria and predominantly 

powered by oxidation of glucose and FA; and type II glycolytic fibers that contain less 

mitochondria and heavily rely on glycolysis for energy [28].

Both PPARα and PPARδ play important roles in regulating muscle FAO. Overexpression of 

either in muscle induces FAO by up-regulating genes involved in fatty acid utilization and 

beta-oxidation [17,18,29,30]. However, PPARα overexpression also promotes a fiber-type 

transition towards more glycolytic fibers which have lower mitochondrial OXPHOS 

activity. This induces lipid accumulation and drives the development of glucose intolerance 

and insulin resistance [18,30]. PPARα deletion, on the other hand, increases the number of 

oxidative fibers and improves glucose homeostasis, despite the reduction in muscle FAO 

[18,30].

In contrast to PPARα, overexpression of PPARδ does not cause lipid accumulation or 

glucose intolerance [17,29]. In addition to induced FAO, PPARδ also increases the 

proportion of oxidative fibers that are rich in mitochondria, thus dramatically boosting 

mitochondrial oxidative metabolism. This is associated with ~90% increase in endurance 

capacity and resistance against diet-induced diabetes [17,30]. Conversely, muscle-specific 

PPARδ depletion leads to an oxidative-to-glycolytic fiber-type switch with reduced FAO 

and OXPHOS. The mutant mice gain more weight on high fat diet and are more susceptible 

to insulin resistance [31].
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The ability of PPARα and PPARδ to transform fiber types in opposite directions seem to be 

mediated by two microRNAs, miR-208b and miR-499 [30], which directly activate the 

oxidative and repress the glycolytic myofibril gene program [32].

Liver

In the liver PPARα is the predominant PPAR isoform [24]. It is essential in regulating 

hepatic FA uptake, beta-oxidation, and ketogenesis, especially during fasting. PPARα 

knockout suppresses the expression of genes involved in FA uptake and FAO, resulting in 

decreased basal-state hepatic FA uptake and beta-oxidation [33]. In addition, fasting-

induced hepatic responses, including elevated FA oxidation, gluconeogenesis, and 

ketogenesis, are all impaired in PPARα-null mice. As a result, the fasted mutant mice 

develop hypoketogenesis, hypoglycemia, and liver steatosis [34] [26].

PPARδ seems to play a different role in regulating hepatic energy metabolism. Unlike 

PPARα, PPARδ deletion reduces the expression of genes involved in lipogenesis and 

glucose utilization instead of FA metabolism. Moreover, fasted PPARδ-null mice have a 

normal ketogenic response, increased serum glucose levels and no sign of liver steatosis 

[35]. When overexpressed in the liver, PPARδ increases hepatic glycogen and lipid storage 

as a result of up-regulation of genes in glucose utilization and lipogenesis [36]. In addition, 

hepatic PPARδ activates muscle FA oxidation through a lipid molecule PC(18:0/18:1), 

which is produced by a PPARδ-dependent lipogenic pathway [37].

Fat

PPARα is highly expressed in BAT but not in white adipose tissue (WAT) [24]. Its primary 

function in BAT seems to be the regulation of PGC1α and UCP1 (a mitochondrial 

uncoupling protein) expression. PPARα deletion reduces expression of PGC1α and UCP1 

under both basal and cold-exposure conditions [21,38]. However, unlike in other tissues, FA 

metabolism in BAT is not affected by PPARα knockout, suggesting the contribution of 

other PPARs [39]. When activated in human and mouse adipocytes, PPARα induces the 

expression of FAO genes and increases energy expenditure [40] [41].

PPARδ is expressed in both BAT and WAT. While its function in WAT is unknown, it is 

clear that PPARδ plays an essential role in regulating FA oxidation and thermogenesis in 

BAT [13,42,43]. When ectopically expressed in adipose tissue, PPARδ dramatically induces 

the expression of genes in FAO, OXPHOS, and thermogenesis, which results in increased 

FAO in BAT, reduced systemic adiposity and improved serum lipid profiles [13,44]. 

Conversely, deletion of PPARδ in BAT reduces the expression of FAO and thermogenic 

genes, which impairs in vivo thermogenesis [13,43].

ERRS: Master Executors Controlling Mitochondrial OXPHOS

ERRs are essential regulators of mitochondrial energy metabolism [4]. ERRα is 

ubiquitously expressed but particularly abundant in tissues with high energy demands such 

as brain, heart, muscle, and BAT. ERRβ and ERRγ have similar expression patterns, both 

are selectively expressed in highly oxidative tissues including brain, heart, and oxidative 
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muscle [45]. Instead of endogenous ligands, the transcriptional activity of ERRs is primarily 

regulated by co-factors such as PGC1αand NCOR1 [4,46] (Figure 1).

Of the three ERRs, ERRβ is the least studied and its role in regulating mitochondrial 

function is unclear [4,47]. In contrast, when PGC1α is induced, ERRα is the master 

regulator of the mitochondrial biogenic gene network. As ERRα binds to its own promoter, 

PGC1α can also induce an autoregulatory loop to enhance overall ERRα activity [48]. 

Without ERRα, the ability of PGC1α to induce the expression of mitochondrial genes is 

severely impaired. However, the basal-state levels of mitochondrial target genes are not 

affected by ERRα deletion, suggesting induced mitochondrial biogenesis is a transient 

process and that other transcriptional factors such as ERRγ may be important maintaining 

baseline mitochondrial OXPHOS [41–43]. Consistent with this idea, ERRγ(which is active 

even when PGC1α is not induced) shares many target genes with ERRα[49,50].

Genome-wide analysis of ERRα and ERRγ has confirmed their direct and overlapping 

binding in promoter regions of a large number of mitochondrial genes, many of which are 

PGC1α targets [8,49]. These genes cover many aspects of mitochondrial oxidative 

metabolism, ranging from glucose utilization, FA oxidation, the TCA cycle, and OXPHOS. 

About a quarter of the binding sites are shared by both ERRs, indicating their cooperative 

regulation of those genes. Recently several gain- and loss-of-function studies have revealed 

a better understanding of their in vivo roles [44–50].

Heart

Both ERRα and ERRγ are highly expressed in the heart [45]. Knockout of ERRα causes 

down-regulation of a number of genes in mitochondrial oxidative metabolism, some of 

which are direct ERRα targets. Interestingly, another set of genes in mitochondrial oxidative 

metabolism, including PGC1α and ERRγ, are up-regulated by ERRα deletion, indicating a 

compensatory effect of ERRγ [49]. The ERRα-null heart only shows minimal defects with 

normal mitochondrial function in the basal state. However, when challenged with pressure 

overload (a common method to induce cardiac hypertrophy), the knockout mice exhibit 

more severe phenotypes with dilated hypertrophy and early heart failure, possibly due to a 

defect in energy reserve, indicating the requirement of ERRαduring stressed conditions [51].

Similar to ERRα, ERRγ deletion also causes both down- and up-regulation of genes in 

mitochondrial oxidative metabolism, as well as up-regulated PGC1α and ERRα. The altered 

expression of OXPHOS genes causes severe mitochondrial defects: increased mtDNA copy 

number, reduced ETC complex I activity, and increased complex IV activity. As a result, 

most ERRγ-null mice die within the first week of their life due to heart failure [50].

Skeletal Muscle

ERRα is uniformly expressed in both oxidative and glycolytic muscles [52]. The knockout 

of ERRα in skeletal muscle causes no phenotypic change in the basal state [53] [54]. 

However, in a cardiotoxin induced injury model, its deficiency reduces mitochondrial 

activity and impairs muscle regeneration [54].
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Unlike ERRα, ERRγ is selectively expressed in oxidative muscle [52]. When ectopically 

expressed in glycolytic muscle, ERRγ drives a fiber-type switch from glycolytic to oxidative 

fibers, with dramatically induced mitochondrial biogenesis and vascularization. This is 

accompanied by the induction of genes in pathways such as FA oxidation, TCA cycle, and 

OXPHOS, many of which are direct ERR targets [49,52,55]. However, whether ERRγ is 

required for basal-sate mitochondrial function in oxidative muscle remains unclear.

Fat

Both ERRα and ERRγ are expressed higher in BAT than in WAT [45]. While the role of 

ERRγ in fat is still under investigation, ERRα seems to be required in regulating stress-

induced metabolism in both WAT and BAT. Whole-body knockout of ERRα causes 

reduced fat mass which becomes more striking when challenged with a high-fat diet. The 

ERRα-null WAT has altered expression of metabolic genes including direct ERR targets 

[56]. When challenged with cold-exposure, the mutant mice display impaired 

thermogenesis, accompanied by decreased mitochondrial biogenesis and increased lipid 

accumulation in BAT. Gene expression analysis reveals repression of mitochondrial 

oxidative metabolism genes, many of which are direct ERR targets [57].

Therefore, ERRα and ERRγ cooperatively regulate oxidative metabolism by directly 

controlling the expression of genes in this pathway. Despite their shared target genes, each 

appears to have its own unique function, with ERRα more involved in stress-induced 

responses and ERRγ required for maintaining the baseline mitochondrial integrity.

Conclusion and Perspectives

Taken together, recent studies have clearly demonstrated the essential roles of PPARs and 

ERRs in regulating mitochondrial oxidative metabolism and executing the inducible effects 

of PGC1α (Figure 1). Both PPARα and PPARδ are key regulators for FA oxidation. While 

the function of PPARα seems more restricted in FA uptake, beta-oxidation, and ketogenesis, 

PPARδ plays a broader role in controlling oxidative metabolism and fuel preference, with its 

target genes involved in FA oxidation, mitochondrial OXPHOS, and glucose utilization. 

However, it is still not clear how much redundancy exists between PPARα and PPARδ, a 

question which may require the generation of a double knockout model. In addition, more 

effort is needed to fully understand how PPARα and PPARδ control their target genes in 

response to environmental changes.

Likewise, ERRα and ERRγ have been shown to be key regulators of mitochondrial 

OXPHOS. Knockout studies of ERRαsuggest it to be the principal executor of 

PGC1αinduced up-regulation of mitochondrial genes, though its role in exercise-dependent 

changes in skeletal muscle needs further investigation. Transgenic models have 

demonstrated ERRγ’s powerful induction of mitochondrial biogenesis and its ability to act 

in a PGC1α-independent manner. However, it remains to be elucidated whether ERRγ is 

sufficient for basal-state mitochondrial function in general, and whether ERRα can 

compensate for its function.
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Figure 1. PPARs and ERRs are major executors of PGC1α-induced regulation of oxidative 
metabolism
Physiological stress such as exercise induces both the expression and activity of PGC1α, 

which stimulates energy production by activating downstream genes involved in fatty acid 

and glucose metabolism, TCA cycle, β-oxidation, OXPHOS, and mitochondrial biogenesis. 

The transcriptional activity of PGC1α relies on its interactions with transcriptional factors 

such as PPARs (for controlling fatty acid metabolism) and ERRs (for regulating 

mitochondrial OXPHOS).
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